SCHEME OF INSTRUCTIONS AND EXAMINATION (R-2007) UNIVERSITY OF MUMBAI COURSE: ELECTRONICS AND TELECOMMUNICATION ENGG. Second Year Engineering (Semester III & IV) (Revised-2007) Courses for Academic Year 2008-09, Electronics and Telecommunication Engineering

Scheme for

Sr		No. of Periods per week		Duration	Marks					
No.	Subjects	Lectures	Practical	Tutori als	of Theory Paper(Hrs)	Theory Paper	Term Work	Practi cal	Oral	Total
1	Applied Mathematics-III	4	-	-	3	100	-	-	-	100
2	Digital Logic Design	4	2	-	3	100	25	50	25	200
3	Electronic Devices & Circuits I	4	2	-	3	100	25	-	25	150
4	Electrical Networks	4	2	-	3	100	25	50	25	200
5	Electronic Instrumentation	4	2	-	3	100	25	-	25	150
6	Presentation and Communication Technique	2	2	-	3	-	50	-	-	50
Total		22	10	-	-	500	150	100	100	850

Semester III

Class: S.E.	(Electronics &	& Telecommunication Engg.)	Ser	nester-III
Subject: -A Periods pe 01 Period (Applied Mathe r week of 60 min	matics-III Lecture Practical Tutorial	4 - - Hours	Marks
Evaluation	System	Theory Examination Practical Oral Examination Term Work Total	3 - - - Lectures / 10	100 - - 100 Week Hours
Laplace	Fransforms:			
1. 3. Laplac 2. Matric	fun Cha Convo Heavi te Transforms tes	 Definition, linearity property, La ctions-1, Sinat, Cosat, Sinhat, Cosha First Shifting theorem, Second S ange of scale property, L {}, L {} (A oblution theorem (without proof) 3) Laplace transform of Periodic fu side Unit Step function and Dirac-de and 	aplace transporm of st t Shifting theorem, L { Il theorems with proc unctions, Error Functi elta function. 12	tandard f(t)}, L{}, of). on, Hours
3.2.1	Inverse Lapla	ce transforms, Solution of Ordinary	differential	
3.2.2	equations usin Types of Mat	ng the Laplace Transform method rices- Symmetric, Skew-symmetric,	Hermitian,	
3.2.3	Skew-Hermit Inverse of a N	ian, Orthogonal and Unitary Matrice Matrix using Adjoint of a Matrix	·S.	
	Matrices 1. Ect PA 2. Sys consis 3. Lin 4. Sol elimin iter	nelon form, Rank of a Matrix, Norma Q in the Normal Form atem of Homogeneous and Non-homo stency and solution using rank of a M ear Dependence and independence o ution of a system of simultaneous lim nation method, Gauss-Jordan reduction ative method.	Il Form, ogeneous equations, t latrix. f vectors. hear equations using C on method, Gauss-Se	heir Gauss- idel

3.	Fourier Series	12 Hours
4		1. Definition, Dirichelt's conditions (statement only) Fourier Series of function with period 2. Euler's formulae (with Proof)
3.4.2		Fourier series of functions having Arbitrary period 2L.
		Fourier series of odd and even functions.
		2. Half range Fourier series, Parseval's identity (without proof), Complex form of Fourier Series, Orthogonal & Orthonormal functions.
3.	Fourier Transforms	08 Hours
5		1. Idea of Fourier Integral representation, Fourier
		Sine and Cosine Integral representation.
		Fourier Sine and Cosine Transforms. Linearity property, Change of
		Scale property, Shifting property.
		2. Convolution theorem (statement only) and related problems
3. Z		08 Hours
6. Tı	ransforms	1. Sequence, Representation of a sequence. Basic operations on
		sequence. Basic operations on sequences, Definition of Z
		transforms, Linearity property (without proof). Z transforms of
		standard sequences- Sink, Cosk, Coshk, Sink, Cosk
		2. Change of scale property, Shifting property. Inverse Z
		transforms, Convolution theorem (statement only).
		3. Inverse transform by Direct Division, Binomial expansion and
		Partial fraction method.
	Theory Examination	:

- 1. Question paper will be comprising of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. One question will be compulsory and based on entire syllabus.
- 4. Remaining questions will be mixed in nature. (e.g. suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3)

5 In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Recommended Books:

- 1) A Text Book of Applied Mathematics Vol. I & II by P.N.Wartilar & J.N.Wartikar, Pune Vidyarthi Griha Prakashan.
- 2) Higher Engg. Mathematics by Dr. B.S. Grewal, Khanna Publication
- 3) Higher Engg. Mathematics by B V Ramana, Tata McGraw-Hill Publication.
- 4) Advanced Engg. Mathematics by Wylie & Barret, 6th Edition
- 5) Advanced Engg,. Mathematics by Erwin Kreysizg, John Wiley & Sons, Inc
- 6) Linear Algebra and Applications by Gilbert Strang, 4th Edition, Thompson Books / Cole.
- 7) Matrices By Shantinarayan, S. Chand Publications.

Class: S.E. (Electronics & Telecommunication Engg.)				Semester-III		
Subject: -Digital Logic Periods per week 01 Period of 60 min	Design Lecture Practical Tutorial		4 2 - Hours	М	arks	
Evaluation System	Theory Examination		3	10	0	
·	Practical	3		50		
	Oral Examination		-	25		
	Term Work		-	25		
	Total		-	20	0	
Module Objective	Contents Objectives of this course is to the basics of digital systems are extensively used in comp extensively used in computat	o intro and its putation tion an	duce to applicans whic d data	H the stude ations whi h are processing	Iours nts ch g,	
Pro-roquisito	Concent of Diode BIT and	FFT o	iu meas witchin	a ements	•	
1	Introduction to digital system and analog systems, number s binary arithmetic, codes, basic laws, Universal gates, derived	s, comj ystems operat gates.	parison and cor tions, Bo	g of digital oversion, oolean	8	
2	System definition, input – out	put rela	tion, tru	th table	12	
3	formation, system equation in SOP and POS forms. System of Boolean algebra, k-maps, quir Implementation using basic ar Combinational circuits – code subtractors, multiplexers, de- decoders, PLDs, CPLDs, FPG circuit as a solution to given p	terms of equation ne-mcC nd univ conver multipl As. De roblem	of minte n reduct cluskey p ersal ga rsion, ac exers, e esign of n.	erms maxter tion techni method. tes. lders, encoders, combinatio	12 erms, ques- 12 onal	
4 5	Sequential circuits- latches, fli General models of sequential tables, state graphs, reduction assignment	ip- flop circuit, of state	os, regist derivati e tables,	ers, count ion of state state	ers.12 2 8	
6	Introduction to Logic families ECL and CMOS	and an	alysis o	f TTL,	8	

Theory Examination :

- 1. Question paper will be comprising of total 7 questions, each of 20 marks.
- 2. All questions must be analytical oriented.
- 3. Only 5 questions need to be solved.
- 4. Question number 1 will be compulsory and covering the entire 6 modules.
- 5. Remaining questions will be mixed in nature. (e.g. suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 6. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 7. No question should be asked from pre-requisite module.

Practical Examination:

Practical Examination will be based on any one experiment performed from the list of experiment given in the syllabus and the evaluation based on the same experiment.

Oral Examination: Oral Examination will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term Work: Term Work shall consist of minimum eight experiment performed from the list of experiment given in the syllabus.

The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal): 10 marks

Test (at least one) : 10 marks

Attendance (Practical and Theory) : 05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Practical List:

- 1. Implementation of X-OR and X-NOR using NAND and NOR
- 2. Design of adder, subtractor, BCD adder using IC 7483
- 3. Implementation of logic equations using MUX, DEMUX
- 4. Design of encoders and decoders
- 5. Conversion of flip flops
- 6. Design of counters and registers
- 7. Application of logic design parity checker
- 8. Application of logic design- sequence detector

Recommended Books:

- 1. Digital Logic Comer, Oxford
- 2. Digital Logic Design Principles, Balbanian, Wiley
- 3. Digital Design, Vahid, Wiley
- 4. Fundamentals of logic design, Charles Roth, Cengage (Thomason)
- 5. Digital Fundamentals, Floyd / Jain Pearson
- 6. Fundamental of Switching theory and logic desing, Astola, Springer

Class: S.E. (Electronics & Telecommunication Engg.)			Semester-III		
Subject: -Electroni Periods per week	c Devices & Circuits-I Lecture Practical	4			
01 Period of 60 min	n Tutorial	- Hours	Marks		
Evaluation System	Theory Examination Practical Examination - Oral Examination Term Work Total	3	100 25 25 150		
Module Objective	Contents To understand the analysis and synthesis / desi BJT and JFET and diode applications.	- gn of	Hours		
Pre-requisite	To understand the concept of design. DC/AC network theorems				
1	Biasing of BJT: DC operating point, BJT characteristics & parame without emitter resistor, analysis of above circuits variation of operation point and its stability	eters, all bia and their o	asing, with and design, 10 Hours		
2.	Small Signal BJT amplifiers: AC equivalent circuit, Rin, Av, Ai, Ro, hybrid, redesign. BJT as switch, BJT as a diode, emitter considerations. Design of CE, BJT amplifier.	e model and coupled pa	d their use in amplifier ir, design 10 Hours		
3.	Biasing of FET: Types of FET, characteristics and parameters of JI MOSFET, different biasing circuits, their analysis operating point and its stability. CMOS devices.	FET, MOS and desig	FET, enhancement n, location of		
4.	Small Signal FET amplifiers: AC operation point, common source, common dra characteristics. Design of CS, JFET amplifier.	uin, commo	10 Hours on gate		
5.	Power Circuits: Design of rectifier circuit with Filters (L, LC, C, I regulator using zener, BJT in series, BJT in shunt.	Multiple L	10 Hours C, L & pi section) and		
6.	Power switching and control devices: Characteristics, ratings and applications of silicon Shockley diode, DIAC, TRIAC, UJT, Photo trans- optical couplers, IGBT, Power MOSFET.	controlled istor, light	6 Hours l switch (SCS), activated SCR,		

Theory Examination :

- 1. Question paper will be comprising of total 7 questions, each of 20 marks.
- 2. All questions must be analytical oriented.
- 3. Only 5 questions need to be solved.

4. Two Questions will be compulsory and based on design of CE-BJT/CS-JFET amplifier/ Power circuits given in syllabus.

- 5. Remaining questions will be mixed in nature. (e.g. suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 6. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 7. No question should be asked from **pre-requisite module.**

Oral Examination: Oral Examination will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term Work:

Term Work shall consist of minimum eight experiments and a written test.

The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal): 10 marks

Test (at least one) : 10 marks

Attendance (Practical and Theory): 05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

List of laboratory experiments:

- 1. Find out h-parameters of BJT,
- 2. Find out the Stability factor of BJT- Fixed biased circuit with Re and without Re.
- 3. Find out the Rin, Ro, Av, & Ai of CE BJT amplifier and verify with theoretical value.
- 4. Design and implement CE-BJT amplifier and verify various parameters.
- 5. Find out the parameters of JFET
- 6. Draw the output and transfer characteristics of D-MOSFET, E-MOSFET.
- 7. Find out the Rin, Ro, Av, of CE JFET amplifier and verify with theoretical value.
- 8. Design and implement CS- JFET amplifier and verify various parameters.
- 9. Design and implement FWR with LC filter and verify various parameters.
- 10. Design and implement transistorized Regulator (Series type) and verify various parameters.

11. Design and implement transistorized Regulator (Shunt Type) and verify various parameters.

12. Draw the characteristics of TRAIC/UJT.

Recommended Books:

1. Foundations of Electronics: circuits & devices, Russell L Meade, Cengage (Thomson)

2. Microelectronic Circuits Analysis and Design, Rashid, PWS Publishing

3. Electronic Circuit Analysis and Design, Donald, A Neamen, TMH

4. Electronic Devices & Circuits Theory, Boylestad, Nashelesky, Pearson Education

5. Electronic Devices and Circuits by A. K. Maini, Wiley

6. Electronic devices – Floyd, Pearson Education Asia publication

7. Microelectronics – Jacob Millman & Arcin Grabel, Mc-Graw Hill Publication.

Class: S.E. (Electronics & Telecommunication Engg.) Se					Semes	ter-III
Subject: -Electrical	Networks					
Periods per week	Lecture			4		
•	Practical			2		
01 Period of 60 mir	n Tutorial			-		
				Hours		Marks
Evaluation System	Theory E	xamination		3		100
	Practical Examin	nation	3		50	
	Oral Exa	nination		-		25
	Term Wo	rk		-		25
	Total			-		200
Module Objective	Contents To understand basic pri Electronic circuit eleme	nciples and com nts.	ponents	of Elec	trical,	Hours
Pre-requisite	Fundamentals of DC a	nd R-L-C AC ne	etworks			
1. Netv	vork Analysis:					8 Hours
DC Ne	twork analysis with indep	endent and deper	ndent sou	rces. AC	C Netwo	ork analysis.
Couple	ed coils-mutual inductance	2.				-
2. Gra	ph Theory:					5 Hours
Fundar	nental definitions, The Inc	cidence matrix, T	he Loop	matrix a	and cut-	set matrix,
Loop, I	Node and Node- pair defir	itions.				
3. Tim	e response of first and se	cond order syst	ems:			15 Hours
Initial of	conditions, Evaluation and	l Analysis of Tra	nsient an	d steady	state re	esponses
using c	lassical Technique and La	place Transform	•			
4. Netv	vork Functions:					12 Hours
Networ	k functions for the one po	ort and two port n	etworks,	Driving	g point a	nd transfer
functio domair functio	ns, Poles and Zeros of Ne behavior as related to the ns.	twork functions a Pole-Zero plot.	and const Draw Bo	traints of ode plot	n their lo for all ty	ocations, Time ypes of networks

5. Two-port parameters:

12 Hours

Open circuit, short circuit, transmission and hybrid parameters, relationship between parameter sets, reciprocity and symmetry conditions, interconnection of two-port networks, T and Pi representation, Terminated two-port networks.

6. Elements of reliability theory:

10 Hours

Causality and Stability, Hurwitz Polynomials, Positive real functions

7. Fundamentals of Network Synthesis (for driving point functions only): 10 Hours Elementary Synthesis Procedures, Properties and synthesis of L-C, R-C and R-L impedance and admittance functions, synthesis of R-L-C functions.

Theory Examination :

- 1. Question paper will be comprising of total 7 questions, each of 20 marks.
- 2. All questions must be analytical oriented.
- 3. Only 5 questions need to be solved.
- 4. One Question will be compulsory and based on entire syllabus.
- 5. Remaining questions will be mixed in nature. (e.g. suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 6. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 7. No question should be asked from **pre-requisite module.**

Practical Examination:

Practical Examination will be based on any one experiment performed from the list of experiment given in the syllabus and the evaluation based on the same experiment.

Oral Examination:

Oral Examination will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term Work:

Term Work shall consist of minimum eight experiments and a written test.

The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal): 10 marks

Test (at least one) : 10 marks

Attendance (Practical and Theory): 05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

List of laboratory experiments:

- 1. Make Current dependent Current source and verify.
- 2. Make Voltage dependent Current source and verify.
- 3. Verify Thevenin's and Norton's Thecrem using, at lease, one dependent source.
- 4. Find out time constant for series R-L circuit.
- 5. Find out time constant for series R-C circuit.
- 6. Make suitable two-port network and find its Z-parameters.
- 7. Make suitable two-port network and find its h-parameters.
- 8. Draw the Bode plot for given network and verify.
- 9. Synthesis the R-C network.
- 10. Synthesis the R-L network.

Recommended Books:

1.Network Analysis - M. E .Van Valkenburg, PHI publication

- 2. Network Analysis and Systems-Frenklin F. Kuo, John Wiley & sons publication.
- 3. Electrical Network theory- Balabancan and Bickart Robert E.Kreiger publishing company.

Class: S.E. (Electronic Class: S.E.)	ss: S.E. (Electronics & Telecommunication Engg.) Semester-II						
Subject: -Electron	nic Instrumentation						
Periods per week	Lecture	4					
L	Practical	2					
01 Period of 60 m	in Tutorial	-					
		Hours	Marks				
Evaluation System	n Theory Examination	3	100				
	Practical Examination						
	Oral Examination	-	25				
	Term Work	-	25				
	Total		150				
Module	Contents		Hours				
Objective	To understand basic principles and com	ponents of Electron	ic				
	Measurements.						
	To understand Principles of Advanced E	lectronic Instrume	nts and its				
	application.						
Pre-requisite	The course begins with linear DC and A	C circuits and fami	liarizes the				
	student with standard measurement tool	s. The relationship	between				
	time and frequency domain measuremen	its of circuits is a fu	ndamental				
	component.						
1.	Sensors for Transducers:		12 Hours				
	Potentiometers, Differential Transformers, Resistance Strain Gauges,						
	Capacitance Sensors, Eddy-Current Sensor	tance Sensors, Eddy-Current Sensors, Pizoelectric, Photoelectric					
	RTD, Thermisters, Thermocouple Sensors.						
2.	Oscilloscopes		12 Hours				
	Specifications of general purpose Oscillosc	Specifications of general purpose Oscilloscope, Controls, sweep modes,					
	applications Digital storage oscilloscope an	d its feature like Rol	l, Refresh,				
	and sampling rate, applications of DSO in (Communication, rece	ent trends in				
	oscilloscope technology.						
3.	Signal Analyzers		8 Hours				
	Introduction to total harmonic distortion, w	ave analyzer and its	applications,				
	FFT analyzer and Network analyzer and the	eir applications.					
4.	Measuring Instruments and Test Equipr	nents	8 Hours				
	True RMS meter, Q meter, Standard AC an	nd DC sources, Instru	iments for				
	digital and analog circuit testing and autom	atic test equipment.					
5.	Converters and digital Instruments	1 1	8Hours				
	A/D and D/A converters and their types. St	pecifications, data lo	ggers.				
	significance of 3 ¹ / ₂ and 4 ¹ / ₂ digit, Automat	ion in digital instrum	ients, DMM,				
	Digital frequency meter. Universal counter	and their application	ns like event.				
	ratio, totalizing and timers etc.	TTTT	···				
6.	Data Transmission Techniques		8Hours				
	Introduction to data transmission technique	s. Pulse modulation	digital				
	modulation techniques like Amplitude shift	Keying, Phase shif	t Keving.				
	telemetry and its applications in Instrument	ation.					

Theory Examination:

- 1. Question paper will be comprising of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved including compulsory question no. 1 which must cover all the topics given in the syllabus of the said subject.
- 3. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 4. No question should be asked from **pre-requisite module.**

Oral Examination:

Oral Examination will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term Work:

Term Work shall consist of minimum eight experiments and a written test.

The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal): 10 marks

Test (at least one) : 10 marks

Attendance (Practical and Theory): 05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

List of laboratory experiments:

1.Measurement of True RMS value using True RMS meter.

2. To measure various physical phenomenon's viz. Temp. Pressure, Displacement etc. using different Transducers.

- 3. Q- Value measurement using LCR meter.
- 4. To measure Bandwidth using universal counter.
- 5. To measure X-amplifier bandwidth of CRO.
- 6. To measure time constant of relay using DSO
- 7. To build a function generator using IC.
- 8. To generate arbitrary waveform using arbitrary waveform generator.
- 9. To measure harmonics in different waveforms using FFT analyzer.
- 10. To study any one modulation technique.

Books Recommended:

1. Electronic Measurement and Instrumentation – H. Oliver and J.M.Cage, McGraw Hill, 2nd edition.

2. Instrumentation for Engineering Measurements, James Dally, William F. Riley and Kenneth G. McConnell, John Wiley and Sons. Inc., 2nd Edition 1993.

3. Digital Instrumentation, A.J. Bowens, McGraw-Hill, 1986.

4. Instrumentation Devices and Systems- C.S.Rangan, G.R. Sarma, V.S.V. Mani Tata McGraw Hill, 9th edition.

5.Elements of Electronic Instrumentation and Control , J.J.Carr, Prentice Hall, 3rd Edition.

6. Electronic Instrumentation and Measurement Techniques, W. Cooper, A. Helfric, PHI, 3rd edition.

7. Electronic Instrumentation, J.A. Alloca Prentics Hall, 2nd edition.

8. Handbook of Electronic Instrumentation, Coombs.

Class: S.E. (Electronics & Telecommunication Engg.)		Semester-III		
Subject: -Presentation and	I Communication Techniques			
Periods per week	Lecture	2		
_	Practical	2		
01 Period of 60 min	Tutorial	-		
		Hours	Marks	
Evaluation System	Theory Examination			
-	Practical Examination			
	Oral Examination	-		
	Term Work	-		
	Total		50	

1. Communication in a Business Organization:

06

08

Internal & External Communication, Types of meetings, strategies for conducting successful business meetings, documentation (notice, agenda minutes, resolution) of meetings. Introduction to modern communication techniques (for e.g. e-mail, internet, video conferencing etc), Legal & ethical issues in communication (intellectual property rights, patents TRIPS, Geographical indications)

2. Advanced Technical Writing:

a. Report – Writing : Definition and importance of reports. Qualities of Reports, language and style in reports, type of reports, formats (letter, memo, project-reports), methods of compiling data for preparing report.

b. Technical Paper Writing, Writing business Proposals.

3. Interpersonal Skills:

Introduction to emotional intelligence, Motivation, Negotiation and conflictresolution Assertiveness, Team-building, Decision-making, Time-management, persuasion.

4. Presentation Skills:

Elements of an effective presentation, Structure of a presentation, Presentation tools, Audience analysis, Language Articulation, Good pronunciation, Voice quality, Modulation, Accent and Intonation.

5. Career Skills:

Preparing resumes and cover letters. Types of Resumes, Interview techniques: Preparing for job interviews, facing an interview verbal and non-verbal communication during interviews, observation sessions and role-play techniques to be used to demonstrate interview strategies (mock interviews)

6. Group discussion:

Group discussions as part of selection process, Structure of a group discussion, Dynamics of Group Behavior, Techniques for effective participation, Team work and use of body language.

Term Work: Part-I (25 Marks): Assignments:

- 2 assignments on Communication topics
- 3 assignments on Report writing
- 3 assignments on Interpersonal Skills
- 2 assignments on career skills
- At least one class test (written)

Assignment : 10 marks

Written Test : 10 marks

Attendance (Theory and Practical) : 05 marks Term Work : Part-II (25 Marks): Presentation;

Distribution of term work marks will be as follows: **Project report presentation: 15 marks Group discussion : 10 marks**

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Books recommended:

- 1. Fred Luthans: Organizational behavior, McGraw Hill
- 2. Lesikar and Petit, Report writing for business, Tata McGraw Hill
- 3. Huckin & Olsen, Technical writing and professional communication, McGraw Hill
- 4. Wallace & Masters, Personal development for Life & work, Thomson Lerning.
- 5. Heta Murphy, Effective Business Communication, McGraw Hill
- 6. Raman and Sharma, Report Writing.